intel)

HAsImM:
FPGA-Based Micro-Architecture
Simulator

Michael Adler

Michael Pellauer
Kermin E. Fleming*
Angshuman Parashar
Joel Emer

*MIT

HAsim Is a Timing Model — Not RTL!

* Performance models are:
« Highly parallel, but not easily vectorizable

« Pipelineable
e Full of communication channels

* Programmed like a software timing model
* FPGA is just a highly parallel execution engine
FPGA cycle '= Model cycle

* FPGA simulation will be faster than software if:
« Parallelism can overcome the ~40x clock difference
« I/0O bandwidth is sufficient

Fast, Accurate or Now?

Accuracy

Model
Speed

Development
Time

FPGA Picture is Different

Accuracy
Model Developme
Speed Time

Reducing Development Time:
Managing Complexity

* Programming Language (Bluespec)

* Timing model infrastructure

Reusable functional model
Inter-module communication

— Tracking simulated time

* Hybrid hardware / software models

;

pment
ne

GEMS for:

» Checkpoints

e Loading

e Functional memory management
 Emulating difficult instructions

STDIO on General Purpose Machines

FILE *f = fopen(path, “w”);
const char *name = “Kenneth”;
fprintf(f, “%s, what is the frequency?\n”, name);

I/0 In Hardware Description Languages
(System Verilog)

Integer f = fopen(path, “w”);
string name = “Kenneth”;
fwrite(f, “%s, what is the frequency?\n”, name);

Nothing Comes from Nothing

FPGAs have:

* No standard physical device
* No standard device model

* No standard system interface
* No standard API

What Makes Hardware General Purpose?

* The software
— Compilers and library APIs make code “universal”

- Hardware standards (ACPI, PCle) mostly make OS
development and compiler writing easier. Little impact on
user programs.

— ISA matters if you want to avoid recompiling. ISA is part
of the software API, along with standard libraries.

LEAP Platform

FPGA Software
Timing Partition

Decode

v

Functional Partition J

Software Services

Memor
Emulate y Streams
State
A A A

Control ‘

Platform Interface
Virtual ﬂ/irtual \

Platform Platform

Scratchpad
Memory

A 4

=

A

\ 4 \ 4

[FPGA Physical Platform k:’){ Software Physical Platform J

10

Reducing Model Complexity:
Shared Functional Model

Functional Pipeline

o Cirni _
i;r::]lqlar philosophy to GEM5 or
- iSr:wnp%leemISrﬁ;?igﬁtlonal model
" Loy s
_ E?éggnrggrc]ltels can be ISA- Fugfc:;itc;nal

* Each functional pipeline stage
behaves like a request/response

FIFO

ISPASS 2008 Paper: Local
Quick Performance Models Quickly: Timing-Directed Commit
Simulation on FPGAs

DTranslate

Global
Commit

11

Timing Model

* Timing &
functional models
communicate
state using tokens

* Minimal timing
model:
— Only state is IP

— Drives a single
token at a time

Timing Pipeline

Functional Pipeline
—3 IP

ITranslate

Decode

Execute Functional

Next IP State

DTranslate

\{[Taqle]nY;

Local

Commit

Global
Commit

12

Pipeline Parallelism

* Model of a pipelined
design naturally runs
pipelined on an
FPGA

¢ Detailed model of a
pipelined design
runs faster than a
trivial, unpipelined
model!

Functional Pipeline

ITranslate

Decode

Execute Functional
State

Next IPs
]

DTranslate

\{[Taqle]nY;

Local
Commit

Global
Commit
]

13

Managing Time:
A-Ports and Soft Connections

FPGA cycles = simulated cycles:

- We are building a timing model, NOT a prototype

— 1:n cycle mapping would force us to slow the

timing clock to the longest operation, even if it is
infrequent

— 1:n would force us either to fit an entire design
on the FPGA or synchronize clock domains

14

Option #1: Global Controller [rejected]

Central controller advances cycle when all modules are ready

* Improvement: slowest possible cycle no longer dictates
throughput

* However:
— Place & route becomes difficult
— Long signal to global controller is on the critical path

Option #2: A-Ports

* Extension of Asim ports
* FIFO with user-specified latency and capacity

* Manage model time by guaranteeing exactly one
message per cycle through every port

* Beginning of model cycle: read all input ports

* End of model cycle: write all output ports

ISFPGA 2008 Paper:
A-Ports: An Efficient Abstraction for Cycle-Accurate Performance Models on FPGAs

15 intel'

16

Hybrid Modeling:
Software Instruction Emulation

<
)
& Execute Execute
Functional 1
Cache g1
. \ 21
[y
RRR oy ‘o S
Layer S \2 S
£ \‘° 51
S
NG » /
Emulation Memory Emulation
Server Server Server
g
O
=
&
8 GEM5
Functional Instruction Simulator

— Time —

17

HAsim / LEAP Open Source

Redmine site with source and papers:

http://asim.csail.mit.edu/

