
A novel way to efficiently simulate complex full systems 
incorporating hardware accelerators

Nikolaos Tampouratzis

Technical University of Crete, Greece 

ARM Research Summit 2017 Workshop



Motivation / The Idea

➢Most simulators used for evaluating the complete user applications (i.e. full-system 
CPU/Mem/Peripheral simulators) lack any type of SystemC accelerator support.

➢We developed a novel simulation environment comprised of a full system simulator 
with a SystemC cycle-accurate hardware accelerator device
✓Efficiently and seamlessly supporting communication and synchronisation issues 
✓Allows for fast design of any kind of accelerator

➢COSSIM can be extended to support our Simulation environment to simulate 
hundreds of nodes incorporating H/W Accelerators

➢Our System utilizes:

➢GEM5 full-system simulator : simulates complete systems comprised of numerous CPUs, 
peripherals running full OS

➢Accellera [1] : open-source proof-of-concept SystemC simulator (it has been approved 
by the IEEE Standards Association [2])

[1] “Accelera SystemC wiki website,” https://en.wikipedia.org/wiki/Accellera

[2] IEEE 1666 Standard SystemC Language Reference, IEEE

https://en.wikipedia.org/wiki/Accellera


Our Approach

I. Operating System (OS)

✓a set of device drivers in Kernel 
mode have been developed 

✓our novel approach allows full 
overlap of the two sub-
simulations

Operating System

Linux Kernel

User Space

A
c
ce

le
ra

to
r

D
ri

v
e
r

Applications

B
U

S

Accelerator Wrapper

M
as

te
r

S
la

v
e

pio

dma

Core
(C++/SystemC)

Device Memory

Sy
st

em
C

 
A

cc
e

le
ra

to
rport

portII. Memory Bus

✓ Bus master port is connected to the peripheral 
I/O Wrapper (write/read registers) 

✓ Bus slave port is connected to the GEM5 DMA 
Wrapper (write/read large amounts of data)



Our Approach (2)

III. Accelerator Wrapper

✓a mixed C++/SystemC core 
connection of the GEM5 C++ 
functions and the accelerator’s 
SystemC threads 

✓a large Device Memory to store 
the data from OS’ memcpy was 
implemented (simulating the DDR 
memory of most of the real 
systems incorporating PCI-
connected FPGA and/or GPU 
boards)

Operating System

Linux Kernel

User Space

A
c
ce

le
ra

to
r

D
ri

v
e
r

Applications

B
U

S

Accelerator Wrapper

M
as

te
r

S
la

v
e

pio

dma

Core
(C++/SystemC)

Device Memory

Sy
st

em
C

 
A

cc
e

le
ra

to
rport

port

IV. SystemC Accelerator

✓ a reference SystemC accelerator has been developed 
to evaluate the Accelerator Wrapper and the Linux 
Kernel Drivers 

✓Our approach is a helpful reference for any 
synthesizable SystemC accelerator



Implementation
Accelerator Wrapper

o Buddy dynamic memory allocation 
algorithm scheme [3] implemented 
(similar to the cudaMalloc of NVIDIA 
GPUs)

o 2 DMA engines  efficiently transfer 
high data volumes from the Linux 
driver to the Accelerator Wrapper 
and vise versa (cudaMemcpy similar)

o GEM5 synchronisation event 
triggered at every SystemC
accelerator device cycle

SystemC AcceleratorDevice 

Memory

DMA

Read

DMA

Write

Dynamic 

Memory 

Allocator

Synchronization

Event

C++ code SystemC code

Init Thread
(reset, start device)

Clock Thread
(create clock pulse,

Synchronization with 

GEM5 in every cycle)

MemCpyToDevice

MemCpyToHost

I/
O

 P
o

rt
s

Controler/

Scheduler

Thread

Computation

Thread 0

Computation

Thread N

...

Internal 

RAM 0

Inte rnal 

RAM M

...

User Application

MemCpy

Functions

o initialisation thread  generate the reset and start 
signals

o clock thread   generate the actual clock signal of the 
accelerator

o 2 MemCpy SystemC threads  pass the data from the 
Wrapper Device Memory to synthesisable I/O ports

[3] D. E. Knuth, The Art of Computer Programming, 
Volume 1 (3rd Ed.): Fundamental Algorithms.



Implementation
SystemC Accelerator

oA reference Controller/Scheduler SystemC the main 
SystemC thread

o The user has the ability to create as many individual 
cores as required

o2 SystemC memcpy functions  efficient 
communication with the Accelerator Wrapper Memory

SystemC AcceleratorDevice 

Memory

DMA

Read

DMA

Write

Dynamic 

Memory 

Allocator

Synchronization

Event

C++ code SystemC code

Init Thread
(reset, start device)

Clock Thread
(create clock pulse,

Synchronization with 

GEM5 in every cycle)

MemCpyToDevice

MemCpyToHost

I/
O

 P
o

rt
s

Controler/

Scheduler

Thread

Computation

Thread 0

Computation

Thread N

...

Internal 

RAM 0

Inte rnal 

RAM M

...

User Application

MemCpy

Functions



User-Friendly Interface (1)

oAccelMemcpy & AcelCallDevice asynchronous functions

o the application running on GEM5 (including the OS) can continue to execute its computational tasks 
while the SystemC accelerator is also running/simulated.

o DMA engines are used to transfer the Data from the Host to the Device

SystemCMemcpyHostToDevice

SystemCMemcpyDeviceToHost

Operating System

Linux Kernel

User Space

A
c
ce

le
ra

to
r

D
ri

v
e
r

Applications

B
U

S

Accelerator Wrapper

M
as

te
r

S
la

v
e

pio

dma

Core
(C++/SystemC)

Device Memory

Sy
st

em
C

 
A

cc
e

le
ra

to
rport

port

SystemCMemcpyHostToDevice

SystemCMemcpyDeviceToHost



User-Friendly Interface (2)

SystemC AcceleratorDevice 

Memory

DMA

Read

DMA

Write

Dynamic 

Memory 

Allocator

Synchronization

Event

C++ code SystemC code

Init Thread
(reset, start device)

Clock Thread
(create clock pulse,

Synchronization with 

GEM5 in every cycle)

MemCpyToDevice

MemCpyToHost

I/
O

 P
o
rt

s

Controler/

Scheduler

Thread

Computation

Thread 0

Computation

Thread N

...

Internal 

RAM 0

Inte rnal 

RAM M

...

User Application

MemCpy

Functions

memcpyToDevice

memcpyToHost



Evaluation

GEM5
Boot OS

GEM5
Run App

InputData
(Write File)

Accellera
(SystemC)

OutputData
(Write File)

(1)

GEM5
Boot OS

GEM5
Run App

Accellera
(SystemC)

(2)

(3)

(4)
(5)

(1)
(2)

(3)

DMA

Conventional Method (top)
➢ in every SystemC simulator call, the 

full-system must boot the OS from 
scratch

➢ no notion of synchronisation exists

Proposed method (bottom)
✓ full-system simulator boots the OS 

only once
✓ full global synchronization is 

supported through programmed 
I/Os and DMA engines

(i) Standard (top) & (ii) Our novel method integrating
GEM5 Full System Simulator with Accellera Simulator



Performance Results (1)
System is evaluated on two use cases using Intel i7-3632QM at 2.2GHz with 8GB of 
RAM as processing platform.
➢ Mutual Information (MI) [4] algorithm & Transfer Entropy (TE) [5] algorithm

Mutual Information Transfer Entropy

# of Iterations 
(Complexity)

Standard
Method

Our 
Method

# of Iterations
(Complexity)

Standard
Method

Our 
Method

100 37.3 min 4.5 min 20 37.5 min 4.7 min
200 37.5 min 4.7 min 50 37.8 min 5.1 min
500 37.9 min 5.3 min 100 38.4 min 6 min

Simulation time of (i) standard and (ii) our method using two use cases 
(Accelerator is called ten times)

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY, USA: Wiley-Interscience, 1991.
[5] T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett., vol. 85, pp. 461–464, Jul 2000.



Performance Results (2)

Simulation time of TE using different # of Accelerator calls




